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I. Introduction

(1)

In his 1956 paper , Moser mentions a lottery puzzle
posed by Cayley in 1875(2). Moser discusses a formalized
game in optimal stopping, closely related to Cayley's puzzle,
and supplies a solution.

In Section II of this paper, we describe Moser's Game
and repeat its solution, following, in the main, the lucid
treatment of Howard(s)*. In Section III we introduce a
generalization of the game -- an extension which we believe
to be novel -- and give its solution. Section IV briefly

discusses the applicability of the extended problem to matters

involving the allocation of limited resources.

II. Moser's Game
The problem under discussion may be posed in the form
of a game against Nature:

A player with a marker observes repeated draws !
of a random sample from a known probability distri-
bution on the real numbers. Upon observing the
magnitude, x, of a draw, he may choose to tag (T)

s that draw with his marker: should he do so, the

game is over and its value is x. Should he not

Wiite Section
T Section [

o

* A discussion of Moser's Game, under a variety of names,
is found in many treatises on Dynamic Programming or
Optimal Stopping Theory.
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tag (T) that draw, it is discarded and another draw
made and offered to him. At the beginning of the
game he knows that he may observe as many as s
draws if he chooses to do so.

What stopping strategy ought he to adopt to
maximize the value of the game? 1I.e., how shall
he decide when to tag a draw?

Howard's formulation of the solution (with notational
changes) is followed below, with some simplification. Let:
s = No. of remaining choices or draws (or stages).
t(s), or t, = Threshold for stopping at Stage s.

I.e., if the draw at Stage s exceeds t, the
player will tag it; else, he will pass it and
go to Stage (s-1).
v(s) = The expected value of the game when the player
is in Stage s and is using a general tagging strategy.
v*(s) = The expected value of being in Stage s, given
that the player utilizes an optimal tagging strategy.
The player will tag a draw if it is sufficiently large
in magnitude, in the expectation that none of the limited
number of future draws will be larger. Thus, a tagging
strategy is simply a sequence of thresholds, one for each
stage. The player compares the draw at a stage with the

appropriate threshold and tags or not according as the




draws exceeds or fall short of the threshold. Then the

value of the game is the weighted sum of the values which
are expected to result from tagging or from continuing:
v(s) = Pr(T|t) <Value|T,t> + Pr(T|[t)v(s-1) (1)
Now, the probability of tagging is the probability that
the draw, x, exceed the threshold:

Pr(T|t)

PE(x & t})
Of course:
Pr(T|t) =1 - Pr(x > t)
The value of the halted game is the expected value of x,
given that it exceeds the threshold:
<Value|T,t> = E(x|x > t)
Eq (1) may, therefore be written:

vis) = Pr(x > t}) Bix|x > ) » {1-Pr(x = t)} v(s-1) (2)

Uniform Distribution ~

In the special case of drawing from a distribution which

is uniform over (0,1), we have:

and Eq (2) becomes:
v(s) = %(1-t%) + tv(s-1) (3)
If we assume that the player is using an optimal tagging

strategy, we must have:




f vi(s) = M0 1-t%) « tve(s-1)) (4)

By differentiating the terms within brackets with respect to
t(s), we find that the optimal threshold is given by:

t*¥(s) = t* = v*(s-1)
I.e., the best threshold at a stage equals the value of the
game at the subsequent stage. (Quite reasonable: if the
current draw promises to be better than the value of the
residual game, then tag the draw; otherwise, continue.)

Substituting this into Eq(4):

v¥(s) L{1 + t*z(s)}

g L{1 + v*z(s-l)} (5)

Eq(5) is a recursion formula for the value of the game
at any stage in terms of the values at later stages. To ini-
1 tiate the recursion we require, as a given condition to the

problem, the value v*(0) -- how much the game is worth if the

player runs out of draws before applying his marker. The
E most interesting case is v*(0) = 0, and we shall invariably
assume this to hold. (This implies that the game has a null
value if the player never tags a draw.)

Table 1 (based on Howard, but derived independently)
shows v*(s) for the first 30 values of s. The value of the
game approaches 1 asymptotically for increasing s, as one

might expect from the nature of the game and the form of Eq(5).
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OPTIMUM VALUES OF MOSER'S GAME,
DRAWING FROM UNIFORM DISTRIBUTION (AFTER HOWARD(S))

10

20

25

30

TABLE 1

VALUE

0.5000
0.6250
0.6953
0.7u417
07751

0.8004
0.8203
0.8364
0.8u98
0.8611

0.8707
0.8791
0.8864
0.8929
C.8986

0.9037
0.9084
0.9126
0.9164
0.9199

0.9231
0.9261
0.9288
0.9313
0.9337

0.9359
0.9379
0.9399
0.9417
0.9434
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General Distribution

I1f, during the game, the drawings are made, not from a
uniform distribution, but rather from one with a probability
density, f(*), it can readily be shown that the recursion

formula for v*(s) takes the form:

o0 t*
vi(s) = /*zf(z) dz + v*(s-l)/ f(z) dz (6)
t - oo

By differentiating the r.h.s. of Eq(6) with respect to t*
and equating the result to 0, we find that the optimal
threshold again obeys the relation:
t*(s) = v*(s-1) (7)
Numerical problems may be encountered if the functions,

f(z) and zf(z), are not integrable in closed form.

III. Generalization of Moser's Game

We generalize Moser's Game by giving the player, not
one, but n markers. As before, he has s draws and may tag
a draw or let it pass; if he tags it and if draws and markers
remain, the game resumes. At the end, the value of the game
is the sum of the tagged draws. We write:

vn(s) = Expected value of a game which is in Stage s

with n markers remaining.

tn(s), or t = Threshold used in Stage s with n markers.

Then we may write an equation analogous to Eq(1l):
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v (s) = Pr(T|t){<Value T,t,n> + vn_l(s-l)}
+ {l-Pr(Tlt)}vn(s-l) (8)
Eq(8) expresses the fact that the value, vn(s), is the

: weighted sum of the values of two exclusive alternatives:

i. Tagging the current draw, which accrues the value

increment, <Value|T,t,n>, and leaves the player

with the value of the residual game, viz,

Vy-10s-1)

ii. Passing the current draw, which leaves the player

with a game of value, vn(s-l)

By manipulations similar to those in Section IT, we find:

" _ max _
vk (s) ” l?r(T]t){<Va1ue Tot,n w 0%, (s 1)}

+ {1-Pr(T[t)}v*n(s-1ﬂ (9)

Uniform Distribution

Once again, matters simplify if the drawings arise from ‘
1 a uniform distribution over (0,1). Eq(9) becomes:

vi(s) = MX(1-t?) ¢ (1-t)vr [ (s-1) + tvA(s-1))  (10)

By differentiating within the brackets, the optimum threshold

is found to be:

t*n(s) = V*n(s-l) - v*n_l(s-l) (11)
whence:
v*n(s) =4 E + {v*n(s—l)-v*n_l(s-l)}z] + v*n_l(s-l) (12)




This last equation may be more suggestively written as:

vi (s) = {1 + t*% (s)} + v (s-1) (13)

to show its parallelism with Eq(5).

Eqs(11) and (12) provide a recurrence relation from
which v*n(s) can be determined, knowing the values of the
game for fewer markers and fewer draws. As before, initial
conditions must be supplied, and we take v*l(O) = V*Z(O) =

= v*n(O) = 0, which assigns a null value to any game in
which the player never tags a draw.

Table 2 lists values of v*n(s) for n from 2 to 9, and
for the first 30 values of s. The corresponding thresholds
are shown as well. The asymptotic value of v*n(s) is, of
course, n, the approach to the limit becoming slower with
increasing n. For the first n values of a game in which
there are s choices, the incremental value of the game is
5 per additional stage; this reflects the fact that, whenever
the player ‘has as many markers left as choices, he tags
each draw regardless of its magnitude, and gains an average
of % in value each time. Only when there are more draws
than markers left in a game does the player have an effective

choice of tagging or passing.

General Distribution

For a general density function, f(¢), for the draws, the

optimal threshold is still given by Eq(l11), and the recursion
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relation for the value of a game is:

vk (5) = '[* zf(z) dz + v*n_l(s-l)[*f(z) dz
t*
* V*n(s-l)f £lz) dz (14)

The numerical problems which might be encountered are similar

B . . to those for the unextended game.

IV. Discussion

Moser's Game and its generalization are encountered in
some applications where a limited number of resources ('markers')
are to be allocated against selected realizations of a quan-
tity of recurring opportunities ('draws'). The particular
application of interest to the writer, which drew his atten-
tion to this game, was this:
é A defense commander controls a finite number (n)
of weapons. These are to be expended on an indi-
vidual basis against selected members of an at-
tacking force (of which there are s > n units).
The attackers come into range one after the other
and the commander must decide, from an observed
score on each unit -- higher scores being cor-
related with more dangerous attackers --, which
n units to intercept and which, perforce, to pass.
When not all attacking units can be engaged, and when

the attackers must be dealt with on a one-by-one basis, the




TABLE 2
VALUES OF GENERALIZED MOSER'S GAME
DRAWING FROM UNIFORM DISTRIBUTION
b N = 2 N = 3
» |
S VALUE THRESHOLD S VALUE THRESHCID ;
L J.520) 0.9 0.5000 N.0 |
1.0000 0.0 1.99)) 0.9 .
1. 1953 7.3759 1.50C0 0.C
1. 3203 €.5000 1.7417 0.3047
3 1.4391 3.5786 5 1.9091 0.U214
1.4761 0.6340 2.)341 £.50))
1.5287 346757 4. .4318 0,5590
1.5712 0.7084 2.219% J.6031
1.6)€4 9.7347 Ze275€ 0.6353
: 10 1.5 3€0 0,7555 19 2.3303 0. 6€32
1.6613 0.7749 2. 3750 CoFSU3
1.6833 7.7996 2.4174 0.7157
1.7024 0.8042 2.4528 3.7342
1.7194 0.8169 2. 4815 C.7503 ;
15 1. 7344 0.8265 1c 2.5118 J.76U6 ;
b 1.7479 5.8358 Z.536¢ 0.7772 !
1. 7600 0.8441 2.558¢ 0.7€°€
1.771¢ 0.2517 2.5791 ).7988
1.7810 0.8585 2.5675 0.8030
20 1.7902 0.R8647 20 2.6143 9.81560
1.768¢€ 0.8703 2.62¢8 Cof2041
1. 806U 0.875¢ 2.6L40 0.8312
1.8135 2.89%03 2.6572 0.8377
1.8202 0.8847 2,659t 0.8437
25 1.82€3 7.8%988 25 2.6808 ). 8433
1.8321 0.8927 2.6314 0.8545
1. 8378 0.8962 2.7013 3.8523
1.8U2¢ 0.8996 2.710€ 0.€63¢8
1.8473 0.027 2.7193 0.8689
39 1.8517 7.9956 30 2.727¢ 0.8720
'
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20

25

30

VALUE
€.5000
1.0000
1.5000
2.0000
2. 2751

2.4761
2.6318
2.7568
2.8597
2,9u€2

3.0200
3.0837
3. 1394
3.188¢
3.2321

3.2712
3. 3064
3.3382
3. 3572
3.3937

3.41€1
3. 4405
3.4612
3. 4804
3.498€3

3.5149
3.530¢
3.5u51
3.5588
3.5717

THRESHOLD
0.0
0.0
0.0
0.0
J.2593

0.3660
0.4420
0.5000
0.5462
0.5842

0.€159
V,6429
0.€663
0.6866
0.7046

Je 7235
C. 7347
d. 7476
0.7592
0.7698

0.7794
0.78393
0.7964
0.80u40
0.9110

0.8175
0.€235
0.8292
0.€345
V. 8395

TABLE 2
(Continued)

10

15

20

25

30

11

VALUE
0.5000
1. 0000
1.50C0
2.0000
2.5000

2.8004
3.0287
3. 210°¢
3.3597
3.u4847

3.5912
3.6831
3.7633
3.8340
3, 89€65

3.9531
4.0037
4.04ct
4.0912
4.,12¢3

4, 1642
Ue 1965
u,2262
4.2€3¢
4, 27685

4. 303u
4,325¢€
U, 3467
U, 3664
4,38u9

0.6240
0.€456

J. 6647
0.€81¢
Je €973
0.7112
0.7239

0.735%
0.7U4%52
0.756)
0.7€5C
0.7734

0.7812
0.7885
0. 7953
0.E017
J.8076

S




TABLE 2
(Continued)
N =26 N =7
S VALCE THRESHCLD S VALCE THRESHCLID
0.5000 0.0 0.50C0 C.0
1.0000 J.0 1.0000 0.0 :
1.5C00 0.0 1.50C0 0.C
2.0200 2.9 2.0000 0.0
5 2.5900 0.0 5 2.5000 0.0
3.0)00 0.9 3.0000 J.0
3.3203 0. 159€ 3.5000 0.0
3.5712 D¢ 2916 3.8364 0.1797
3.77%6 0.3607 4, 1064 0.2€53
10 3.9462 Jd. U158 10 44,3303 2.3308
4.0912 C. U615 4,51¢¢c 0. 3841
4,21€2 0.5000 u, 6821 0. 4288
u,3252 0.5331 44,8252 0.4669
4.4212 0.5616 4.9502 0.5000
15 4,5d€4 ‘e 5871 15 5.0611 0e5290
4,502¢ 0.60596 €. 1603 0.5547
4,6512 0.6296 5.249S 2.5776
4,7132 0.6476 €. 3302 0.5982
4,76¢8 De 6639 S.4036 N.6158
20 4,821¢ 0.6787 20 €. 4707 0.€337
u,8688 Je6922 S.5322 0.6492
4,9125 Qe 7046 £.5389 0. €634
4,9%2¢8 0.71€60 E.6U12 0. 6764
4,99C2 0.7266 5.6898 J. 68934 '
25 5.0249 0.7363 25 S.723U49 0.€996
5.0573 0.7454 5.776% 0670993 « 1
5.0876 0.753¢ S.81623 0.7196
5.1160 0.7618 %.8531 Des728¢
5. 1426 0.7€92 5.8276 0.7371
30 5.1677 0.7752 k) 5.9201 0.7459
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10

15

20

25

N =

VALUE

0.5000
1.9200
1.5000
2.0000
2.5000

3.0000
33,5000
4.0000
u,3uce
4.6360

4.8770
.0837
S.2€33
S5.4212
£.5611

S. 6861
S€.7985%
.9002
€.9926
60771

6. 1545
€.2258
fe 2917
f.3528
F. U096

6.4625
6.5119
6.5582
€.6017
€.6426

8

TABLE 2

(Continued)

THRESHCID
0.0
0.9
0.0

oo ocC
(= NN o0

0:1636
e 2435

0.3057
0.3571
0.U4006
0.4381
0.471)

0.5000
0.5259
0.5491
2.5709
0.5891

0D.6064
0.6223
0.6370
0.6595
0.,6630

J. 6747
0.6855
0. 6957
0. 7052
0.7141

13

A A A %

(7,]

10

15

20

25

30

N =

VALCE

0.5000
1.0000
1.5000
2.0000
2.5000

3.0000
3.5000
4,0000
4.50C0
4,8611

S.1613
S. 8174
5.6394
€. 8340
6.0064

6. 1603
6,298¢
E. 4235
6.5371
6.,6409

€.73€0
6.823€
€.90U45
€e979°¢
7.0u92

7. 1141
7.17u8
7. 2316€
7.2850
7.3351

9

TH

®SHCLID

RE®S
0.0
.90
0.0
0.0
0.0
0.9
0.0
0.0
0.0
Jo 1

« 1592
0.2251
0.2843
0.3337
0.3760
J. 4129

0.4453
0.4741
0.5009
0.5233
0.5445

0.5638

<8158
05977
0.6128
0.6267

0.€396
0.6516
0.€629
0.6734
0.€833




sequential decisions faced by any commander take a form

similar to that of Moser's Game, although realistic con-

siderations produce considerable complexities. Nevertheless,

an understanding of the generalized Moser' Game is useful as :

a basis for deducing an optimal engagement strategy.
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